Stellar influence on the photochemistry and spectra of terrestrial planets Antígona Segura California Institute of Technology/NAŠA Jet Propulsion Laboratory James Kasting Pennsylvania State University Victoria Meadows Infrared Processing Data Center/ Caltech David Crisp California Institute of Technology/NASA Jet Propulsion Laboratory Martin Cohen University of California John Scalo University of Texas ### Overview The lifetime of a chemical compound in a habitable planet atmosphere depends on the parent star's UV flux. When considering how detectable a compound could be the UV environment should be considered. ### Stellar spectra at the top of the planetary atmosphere Spectra were normalized in order to get a surface temperature of 288 K on each planet. | | | = | | | | |------------------------|----------|-----------------|---------------------|----------|-----------------| | Star | Spectral | Effective | Age | Distance | Planet semi- | | Stat | type | temperature (K) | (yr) | (pc) | major axis (AU) | | Sun | G2V | 5600 | 5 × 10 ⁹ | 0 | 1 | | σ Bootis ^a | F2V | 6700 | 2×10^9 | 12 | 1.69 | | ε Eridani ^a | K2V | 5100 | 5 × 10 ⁸ | 3.2 | 0.53 | | AD Leob | M4.5V | 3400 | Young | 4.9 | 0.16 | | Modelc | M5V | 3100 | | | 0.07 | ^a Composite spectra were created using UV fluxes from the International Ultraviolet Explorer (IUE) and Kurucz synthetic spectra. ^b Spectra from IUE, Pettersen and Hawley (1989), Leggett et al. (1996) and NextGen models. ^c NextGen models from BaSeL website (www.astro.mat.uc.pt/BaSeL/). ## Atmospheric models #### Climate model Radiative-convective 1-D model (Pavlov et al., 2000, JGR 105, 11981). #### Photochemical model 1-D model for 55 chemical species linked by 219 reactions (Pavlov and Kasting, 2002, *Astrobiology* 2, 27). #### SMART radiative transfer model Generates high-resolution, angle dependent synthetic planetary spectra (Meadows and Crisp, 1996, *JGR* 101(E2), 4595). #### Characteristics of the simulated planetary atmospheres: - Present Earth concentrations for major species (N₂, O₂), and 355 ppm of CO₂ - Surface pressure of 1 atm. - Fixed surface fluxes for biogenic compounds (H₂, CH₄, N₂O, CO, CH₃CI), except for quiescent M stars. ## Spectra from F, G, K and M stars JGR 105, 11981). Temperature, tropospheric H₂O Ozone, stratospheric H_2O 1-D photochemical model for 55 species linked by 219 reactions (Pavlov and Kasting, 2002, *Astrobiology* 2, 27). Profiles of Earth-like planets SMART radiative transfer model (Meadows and Crisp, 1996, *JGR* 101(E2), 4595). # Temperature and H₂O profiles From Segura et al. (2003, 2005) # O₃ profiles | Parent
star | O ₃ column
depth (cm ⁻²) | |----------------|--| | Sun | 8.4×10^{18} | | F2V | 1.6 × 10 ¹⁹ | | K2V | 6.6×10^{18} | | AD Leo | 4.4×10^{18} | | M 3100 | 1.2×10^{18} | More UV more $O_3 \Rightarrow$ effective protection of the surface ## Biosignatures Methane flux = 9.5×10^{14} g/yr, except for non active M (2 x 10^{14} g/yr) Sources: Wetlands, termites, oceans, waste decomposition, fossil fuels, biomass burning, domestic ruminants, rice paddies. Nitrous oxide flux = $7.3 \times 10^{12} \text{ g/yr}$ Sources: Biomass burning, tropical plants, planktonic algae (ocean), wood-rot fungi, wetlands, rice paddies. Methyl chloride flux = $1.3 \times 10^{13} \text{ g/yr}$ Sources: Oceans, soils, biomass burning, industrial sources, cattle and feedlots # Biosignatures on F, G, K and M planets | Parent | Lifetime (yr) | | | | |--------|-------------------|--------------------|-------------------|--| | star | CH ₄ | CH ₃ CI | N_2O | | | Sun | 4.4 | 0.6 | 2×10 ² | | | F2V | 3.9 | 0.5 | 1×10 ² | | | K2V | 15 | 2 | 3×10 ² | | | M4.5V | 1×10 ³ | 2×10 ³ | 7×10 ² | | | M5V | 6×10 ³ | 6×10 ² | 7×10 ⁵ | | CH₄ and CH₃Cl have much longer lifetimes on planets around M stars due to the particular slope of the incoming UV N₂O depends directly on the incident stellar UV # Chemistry on a habitable planet around an active M star Methane destruction in Earth's troposphere $$O_3 + hv (\lambda < 310 \text{ nm}) \rightarrow O_2 + O^1D$$ $$O^1D + H_2O \rightarrow 2 \text{ OH}$$ $$CH_4 + OH \rightarrow CH_3 + H_2O$$ $$CH_3 + O_2 + M \rightarrow CH_3O_2 + M$$ $$\rightarrow \dots \rightarrow CO (\text{or } CO_2) + H_2O$$ ## Photolysis of O₂ and O₃ # O₂ and O₃ signature in planets with different O₂ levels circling around F, G and K stars # The Earth in the past: Mid Proterozoic (2.3-0.08 Ga) # A CO₂ planet without life ### Atmosphere: - •0.2 CO₂, 0.8 N₂ - 1bar surface pressure. - •CH₄ surface flux = 2.8×10^{13} gr/yr (5.35×10^{14} gr/yr) CH₄ with higher UV = 41 ppm CH₄ with present solar UV = 140 ppm (1.6 ppm) Segura et al. 2006 submitted A&A # A CO₂ planet without life ### Atmosphere: - •2 bars CO₂, 0.8 bars N₂ - •2.9 bars surface pressure. Detailed H₂ budget should be considered to properly calculate the amount of O₂ and O₃ formed in a high CO₂ atmosphere ## A planet around AD Leo # Methyl chloride ### Conclusions - The planet's UV environment affects its atmospheric chemistry and the resultant spectrum in complicated and sometimes non-intuitive ways. - On high O₂ atmospheres methane lifetime depends on chemistry driven by the slope of the incoming UV. - On high CO₂ atmospheres CH₄ lifetime depends on the total incoming UV. - N₂O abundance depends directly on the incident UV from 100 to ~220 nm. - O₃ abundance increases with UV. - Earth-like planets around the active M stars developed ozone layers similar to that on Earth and stars hotter than the Sun produce super ozone layers which effectively shield the surface. ### Conclusions - For active M star planets, CH₄ and CH₃Cl have significantly longer atmospheric lifetimes and may be more detectable than for Earth. - For planets around quiescent M stars N₂O also has a significantly longer lifetime. - The signature of O₃ from habitable planets around active M dwarfs may be detectable by missions like *TPF* or *Darwin*, along with the signatures of various reduced gases. - The simultaneous detection of O₂ or O₃ and N₂O, CH₄, or CH₃Cl in the atmosphere of an M-star (or other extrasolar) planet would provide convincing evidence for the existence of extraterrestrial life.